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Abstract
A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae)
super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary

origins and functions of these membranes are unknown. Some proteins putatively associat-

ed with the presence of intracellular membranes in PVC bacteria contain signal peptides.

Signal peptides mark proteins for translocation across the cytoplasmic membrane in pro-

karyotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly con-

served Sec machinery. This suggests that proteins might be targeted to intracellular

membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal pep-

tides are significantly over-represented in proteins preferentially present in PVC bacteria

possessing intracellular membranes, indicating involvement of Sec translocase in their cel-

lular targeting. We also characterized Sec proteins using comparative genomics ap-

proaches, focusing on the PVC super-phylum. While we were unable to detect unique

changes in Sec proteins conserved among membrane-bearing PVC species, we identified

(1) SecA ATPase domain re-arrangements in some Planctomycetes, and (2) secondary

SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia,
Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated

SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD

domain proteins suggests that the presence of these proteins is not related to the occur-

rence of PVC endomembranes. Further genomic analysis showed that secondary SecA_-

DEAD domain proteins are located within genomic neighborhoods that also encode three

proteins possessing domains specific for the Type I secretion system.
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Background
The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum is recognized as a
group of established (Planctomycetes, Verrucomicrobia, Chlamydiae and Lentisphaerae) and
candidate (OP3 and Poribacteria) bacterial phyla [1], although a recent analysis identified Pori-
bacteria as a separate phylogenetic group [2]. FtsZ-independent cell division in planctomycetes
and chlamydiae is one property that distinguishes these groups from typical Gram-negative
bacteria [1]. Cell wall composition is also atypical; there are no reports of peptidoglycan in
planctomycetes, although it has recently been detected in chlamydial cell walls [3]. In contrast,
canonical Gram-negative cell wall and cell division machinery is found in contemporary Ver-
rucomicrobia and Lentisphaerae, and genomic analysis suggests that it was present in the PVC
ancestor [4], a finding that supports retention of a Gram-negative classification for the super-
phylum. Additionally, the PVC super-phylum contains bacteria with unusual cellular organiza-
tion, featuring intracellular membranes of varying structure [5–7]. These range from a single
membrane separating ribosome-containing and ribosome-free parts of the cell in Pirellula spe-
cies, to an extensively invaginated membrane in Planctomyces and Gemmata species, and nu-
merous membrane vesicles in Gemmata [7–9]. From this point forward, we will use the general
term “intracellular membranes” to describe this wide variety of structures.

The evolutionary origin of intracellular membranes in PVC bacteria and their relation to the
origin of Eukaryotes has fueled extensive discussion in the scientific literature [10, 11]. The mem-
branes have long been proposed to exist in additional to the cytoplasmic membrane, generating a
cell plan unique to some PVC organisms [5, 6]. An alternative interpretation posits that the
membranes are formed through invagination of the cytoplasmic membrane, providing an exten-
sion of canonical cell organization of Gram-negative Bacteria, rather than a unique plan [12].

The biological functions (except for K. stuttgartiensis) and molecular origins of PVC intra-
cellular membranes are unknown [1]. Electron microscopy studies showed the presence of ri-
bosome-like particles attached to these membranes in some Planctomycetes species [13, 7],
indicating that in these species the membrane is a site for co-translational protein transloca-
tion, canonically mediated by the Sec pathway.

The highly conserved Sec (translocon) pathway mediates co-translational and post-transla-
tional translocation of signal peptide-containing proteins across the cytoplasmic membrane in
bacteria and archaea, and the membrane of rough endoplasmic reticulum in eukaryotes [14,
15]. The final destinations of proteins transported via Sec in Gram-negative bacteria depend
on several additional factors, and include the cytoplasmic membrane, periplasm, outer mem-
brane, cell wall, and extracellular space. The Sec pathway is composed of several proteins.
SecYEG constitutes a transmembrane channel, the main component of the translocase [16–
18]. The signal recognition particle (SRP) and SRP receptor act together in co-translational
translocation and target the ribosome-mRNA-nascent peptide complex to the translocon. SecB
is a chaperone which maintains the unfolded state of proteins targeted for post-translational
translocation via Sec [19]. Other accessory membrane-bound proteins that increase transloca-
tion efficiency are SecD, SecF and YajC [20, 21]. The last component is a SecA ATPase which
both participates in post-translational targeting of proteins to the SecYEG channel, and pro-
vides transport energy via ATP hydrolysis [22].

Comparative genomic analyses have identified genes potentially associated with PVC cellular
organization [23–26]. In a previous paper on genome content evolution in PVC bacteria, we and
our colleagues identified a number of genes preferentially present in PVC bacteria possessing in-
tracellular membranes, Kamneva et al, 2012 [26]. Within the same study, we performed func-
tional sequence analysis on a sample set of proteins, DUF1501-containing genomic clusters.
DUF1501 is a domain of unknown function found in some bacterial genomes but lacking
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biochemical or any other type of characterization. Several proteins in this sample set were ascer-
tained to possess signal peptides, suggesting that they are targeted to Sec-mediated membrane
translocation. However, it is not clear whether the presence of signal peptides, and potential Sec-
mediated targeting within cells, is limited to the DUF1501-containing genomic module, or if the
same targeting mechanism can be suggested for other proteins associated with PVC intracellular
membranes. If the latter is true, then signal peptides should be over-represented among proteins
associated with PVC intracellular membranes. Thus the first goal of this study was to conduct a
systematic computational analysis of proteins putatively associated with PVC intracellular mem-
branes as reported in Kamneva et al, 2012 [26] to assess the distribution of signal peptides within
these proteins and potentially predict their targeting mechanism.

Although the Sec pathway is integral to the molecular function of membrane structures
across all three domains of life, evolutionary or comparative analysis of this machinery in PVC
bacteria has not been carried out. Therefore the second goal of this study was to perform com-
parative sequence analysis of Sec pathway proteins to detect changes that might be associated
with the emergence of PVC intracellular membranes.

Methods

Characterization of Sec protein domain composition, and detection of
Sec pathway protein homologs
In order to identify protein domains which could be used as markers for various Sec proteins,
we analyzed the domain composition of every protein from the Sec-dependent protein export
pathway in Escherichia coli K-12 MG1655, Chlamydia muridarum Nigg, Bacillus subtilis subsp.
subtilis 168, Nostoc sp. PCC 7107, Bifidobacterium bifidum PRL2010, and Bacteroides fragilis
NCTC9343, as assigned by homology groups in the KEGG database [27] by searching against
the PFAM database [28]. The longest domain present in the protein from all organisms, or a
combination of domains, was designated as a protein signature (S1 Table).

A previously analyzed set of genomes from Kamneva et al, 2012 [26] was used for initial com-
parative analysis of Sec proteins. This set contained 315,905 proteins from 99 bacterial genomes,
representing 20 bacterial phyla that included all the Planctomycetes, Verrucomicrobia and Lenti-
sphaerae genomes sequenced at the time, as well as representative genomes from phylum Chla-
mydiae and other non-PVC bacterial phyla. This set of genomes is described in detail in the
original article Kamneva et al, 2012 [26]. Homologs for every Sec pathway component were
identified in the 99 bacterial genomes included in the dataset, using signature domains for those
components (S1 Table). Protein domain composition was determined for every protein by
searching against PFAM, and in the case of SecA proteins, visualized using a custom R script.

Construction of an extended sequence dataset
In order to identify genomes containing sequences similar to secondary SecA_DEAD domain
proteins from PVC genomes, we carried out an initial blast search [29] against GenBank [30]
and found some proteobacterial genomes, as well as one member each of the phylaNitrospirae
and Chlorobi, that encode similar sequences. To provide broader phylogenetic context for our
analysis and establish the evolutionary relationship between secondary and canonical SecA
ATPases, we assembled a set of distantly related bacterial and archaeal genomes available via
GenBank [30]. The leucyl-tRNA synthetase protein sequence was extracted from every genome
and used as a marker to filter out closely related genomes. The leucyl-tRNA synthetase gene was
selected because it is routinely used as a marker in species tree reconstruction [31, 32] and taxo-
nomic placement of poorly characterized or newly discovered organisms [33]. These sequences
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were clustered using the blastclust program, applying 80% amino acid identity and 85% align-
ment extension thresholds. One representative genome from every cluster was included in the
extended set of bacterial genomes. We also supplemented this set of divergent bacteria by inclu-
sion of all available Planctomycetes, Lentisphaerae, and Verrucomicrobia genomes, as well as ge-
nomes from species within the Proteobacteria, Nitrospirae and Chlorobi determined to possess
genes similar to those encoding secondary SecA_DEAD domain proteins in PVC bacteria. The
final extended genome dataset contained 2,460,622 proteins from 786 bacteria and archaea. The
list of genomes and associated nucleotide accessions is available online: https://www.dropbox.
com/sh/koq9oo0bumx4m19/AABavnbOn8zuqawvgAEiG90_a?dl=0

Protein alignments, phylogeny reconstruction, and domain searches
Additional SecA sequences were extracted from this extended set of genomes using blast search
with an E-value threshold of 1e-10, and then further refined using the presence of the signature
SecA_DEAD domain, as defined by significant PFAM hits [28].

Extended gene families for genes from the genomic neighborhoods were constructed using
blast search against the genome dataset, using an E-value threshold of 1e-10 without additional
refinement. Alignments were performed using MUSCLE [34], and the phylogeny for every gene
family was reconstructed using FastTree [35] implementing the JTT+I+GAMMAmodel of evolu-
tion [36–38]. Domain composition of every protein was determined by searching against PFAM
with the E-value cut-off set to 1, in order to detect even weak domain similarity. Phylogenetic
trees and protein domain compositions were visualized using a custom R script. The large-scale
SecA phylogeny was visualized using the iTOL web-server [39] showing phylum- or class-level
taxonomy for every tip. Alignments, phylogenetic trees and domain annotations are available on-
line: https://www.dropbox.com/sh/koq9oo0bumx4m19/AABavnbOn8zuqawvgAEiG90_a?dl=0

Signal peptide search and statistical analysis
Signal peptides were predicted for every protein in the dataset using lipoP and signalP pro-
grams [40, 41]. LipoP was initially trained on a set of sequences from Gram-negative bacteria
[40] but has also been shown to perform well on sequences from Gram-positive bacteria [42].
SignalP was used with the Gram-positive or Gram-negative option depending on the organism;
a table listing all the genomes and their cell wall type is available online: https://www.dropbox.
com/sh/koq9oo0bumx4m19/AABavnbOn8zuqawvgAEiG90_a?dl=0

Twin-arginine signal peptides were predicted using TAT_signal (PF10518) PFAM domain.
Every gene family in the dataset was classified as having a signal peptide or a twin-arginine sig-
nal peptide if it was detected in at least 50% of proteins within the family. The association of
every gene family with the presence of PVC intracellular membranes was obtained from Kam-
neva et al, 2012 [26]. P-values for the association between the presence of signal peptides and
intracellular membranes were obtained using a hypergeometric distribution within the R statis-
tical environment. Annotation for every protein and protein family is available online: https://
www.dropbox.com/sh/koq9oo0bumx4m19/AABavnbOn8zuqawvgAEiG90_a?dl=0

Signal peptides, and an additional 10 amino acids adjacent to the signal peptides, were ex-
tracted for every protein of those 92 gene families predicted to contain signal peptides. Signal
peptides were aligned using a locally installed version of GLAM [43] using the single letter
amino acid code as an alphabet. The best alignments were further examined for all 92 gene
families to assess patterns of signal peptide divergence.

The extent of similarity between signal peptides within 94 protein families was assessed
using the HH-suite 2.0.9 program [44, 45]. Alignments from GLAM were used to construct
hidden Markov models with the hhmake program, and similarity between the models was
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determined by an all-versus-all search using the hhsearch program. E-values generated by
hhsearch were used as measures of similarity in hierarchical clustering using the Ward algo-
rithm within a custom R-script.

Identification of genes functionally associated with secondary
SecA_DEAD domain proteins
Sequences of the 10 proteins encoded up- and downstream of each secondary SecA_DEAD do-
main protein in every genome were retrieved and grouped into clusters using single linkage clus-
tering, applying 25% amino acid identity and 60% alignment extension thresholds within the
blastclust program. Several clusters of various sizes were identified. Gene neighbor scores from
the STRING database were used to confirm functional association between the clusters [46]. Five
clusters were analyzed further by performing phylogenetic and domain composition analysis.

Reanalysis of expression data and regulatory sequence analysis
Raw microarray data forMethylobacterium extorquens AM1 were downloaded from the GEO
website (http://www.ncbi.nlm.nih.gov/geo/), series GSE42116 [47], and processed using the
limma R package [48]. The normexp procedure [49] was used for background correction and
the quantile method [50] was used for between-array normalization. Log2-transformed values
of intensity for spots corresponding to genes of interest were extracted and plotted using R.

TheM. extorquens AM1 genome was analyzed to assess the presence of terminators of tran-
scription using TransTermHP with default settings [51].

Benchmarking gene neighbor scores from STRING
Gene neighbor scores were extracted for every pair of predicted orthologous groups from the
COG.links.detailed.v9.1.txt file obtained from the STRING website (http://string-db.org).
Correspondence between every protein in the Escherichia coli K-12 substr. MG1655 genome,
and orthologous groups in STRING, was established using the COG.mappings.v9.1.txt file.
Information about protein-protein functional association was extracted from the pathways.
col and protcplxs.col files available from the EcoCyc version 18.5 database [52]. Correspon-
dence between gene names used in EcoCyc and STRING was established using the NCBI tax-
onomy ID for the E. coli genome (511145), and BLATTNER-ID reported for every protein in
the genes.col file from EcoCyc. We used proteins in complexes, pathways, and in both com-
plexes and pathways as true sets of interacting proteins. To generate ROC curves we applied
gene neighbor score threshold values ranging from 0 to 905 to classify every pair of proteins
in the E. coli genome as interacting or non-interacting, and calculate sensitivity and (1-speci-
ficity) for every threshold value as follows:

Sensitivity¼TP=ðTPþFNÞ

1� Specificity¼FP=ðFPþTNÞ
Where TP—true positive, FP—false positive; TN—true negative; FN—false negative.

Results and Discussion

Signal peptides are over-represented in gene families associated with
PVC intracellular membranes
The detection of gene families associated with PVC intracellular membranes, along with their
predicted domain composition and signal peptide prediction, was reported in Kamneva et al,
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2012 [26]. Some of these gene families contain predicted type I signal peptides. This prompted
us to conduct a more systematic examination here to determine whether signal peptides were
over-represented in proteins associated with the intracellular membranes. Prediction of signal
peptides is still an open problem complicated by both the short length of the peptides and am-
biguity in translation start site annotation [53], but there has been recent progress in develop-
ing applicable computational tools. Here we determined the presence of type I and II signal
peptides using the lipoP program (similar results were obtained when the signalP program was
used) and twin-arginine signal peptides using PFAM searches in every gene family from Kam-
neva et al, 2012 [26]. Subsequent statistical analysis (workflow shown in Figure A in S1 Fig)
showed that compared to the genomic average, signal peptides were significantly over-repre-
sented in genes associated with endomembranes; 92 out of 149 of these gene families contained
signal peptides, compared to 16,855 gene families out of 90,731 in the total dataset (p-
value< 1e-16). When signalP-based classification was used we found that 59 out of 149 gene
families associated with endomembranes had signal peptides compared to 9,984 gene families
out of 90,731 in the total dataset (p-value< 1e-16). Fewer gene families were predicted to con-
tain signal peptides with use of signalP because it is a much more conservative tool than lipoP.
Twin-arginine signal peptides were also overrepresented in gene families associated with intra-
cellular membranes, being found in four of these families, but in only 155 gene families in the
entire set of 90,731 (p-value = 6.396e-6).

We also examined the amino acid composition of signal peptides present within proteins as-
sociated with PVC intracellular membranes and the protein region immediately adjacent to the
signal peptide. It appeared that all protein families possessed peptide sequences similar to the
canonical signal peptide or twin-arginine tag (S2 Fig). The structure of canonical signal pep-
tides targeting proteins to Sec-dependent translocation has been extensively studied. The ca-
nonical signal peptide contains three domains: a positively charged N-terminal domain,
followed by a hydrophobic core and a basic C-terminus [14]. The presence of canonical signal
peptides suggests that the canonical Sec translocase is involved in targeting proteins preferen-
tially present in intracellular membrane-bearing PVC bacteria. However, without further ex-
perimental work we cannot currently determine whether these proteins are targeted to the
cytoplasmic membrane or to the intracellular membranes, or whether the canonical Sec-path-
way is indeed involved in their targeting. If the canonical translocon is responsible for protein
targeting to endomembranes, this suggests that PVC species and eukaryotic organisms possess
similar mechanisms of intracellular membrane function which probably emerged indepen-
dently. Protein sequences adjacent to signal peptides do not seem to include amino acids con-
served across the gene families (S2 Fig).

Domain composition and phylogenetic distribution of Sec pathway
proteins across bacterial genomes
We further examined genes encoding Sec pathway components in order to identify evolu-
tionary changes potentially associated with the presence of PVC intracellular membranes
(workflow shown in Figure B in S1 Fig). Through domain analysis of Sec proteins encoded in
the genomes of several model organisms, we identified marker domains for every Sec path-
way component (S1 Table), and applied this information via a PFAM search to identify Sec
proteins within 99 bacterial genomes in the dataset from Kamneva et al, 2012 [26]. Most ge-
nomes in the dataset encode the majority of Sec pathway components with very conserved
domain composition and arrangement with no easily detectable changes (domain composi-
tion data are not shown but available online). In contrast, we determined that all members of
the phylum Planctomycetes except K. stuttgartiensis have rearrangements affecting the
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SecA_SW domain in the canonical SecA protein. Such rearrangements were not observed in
any other canonical SecA proteins in any other bacteria in the dataset (Fig 1). The scaffold
domain of SecA_SW serves as a structural scaffold spanning the entire structure of the SecA
ATPase [54], while the helical wing domain is implicated in the interaction between SecA
and the SecYEG complex [55]. Therefore the observed domain rearrangements might affect
folding of SecA as well as interaction with other components of the canonical translocase.
However the phylogenetic pattern of SecA_SW domain rearrangement does not suggest its
association with the presence of PVC intracellular membranes, as it was not observed in Ver-
rucomicrobia and Lentisphaerae species, which are known to possess intracellular mem-
branes. The phi correlation coefficient (an extension of the Pearson correlation coefficient for
binary variables) between the rearrangement and patterns of presence/absence of intracellu-
lar membranes was 0.76.

Most genomes in the dataset were shown to encode a single copy of each predicted Sec
pathway component, as has been shown before for other organisms, but the SecA ATPase
signature domain SecA_DEAD was present within multiple proteins in some genomes (Fig
1). These included representative Actinobacteria and Firmicutes with previously reported
SecA2 proteins known to function with the canonical Sec translocase (SecA2-only system)
[56]. In some Gram-positive bacteria, both SecA and SecY are found in two copies and func-
tion within the SecA2-SecY2 system [56], but none of those genomes were present in our
dataset [26]. In the case of the SecA2-SecY2 system, several co-located accessory proteins, un-
related to Sec components, have been identified. For a comprehensive review on SecA2 based
systems see [56].

Additionally, we found that the genome of Treponema azotonutricium ZAS-9 (phylum
Spirochaetes) also contains two proteins possessing SecA_DEAD and SecA_SW domains,
one of which appears to have standard domain composition. The second copy contains addi-
tional tetratricopeptide repeat (TPR_12, TPR_1) domains forming tandem repeats, which
are generally involved in protein-protein interactions [57]. This copy also features a
NACHT domain, involved in signal transduction (apoptosis, transcription activation) in eu-
karyotes [58] and linked to metacaspase and various repeat domains in prokaryotes [59].
The presence of an additional SecA copy has not been reported previously for Spirochaetes.
We further examined the domain architecture of NACHT-domain containing proteins in
our dataset of 99 organisms (S2 Fig), and found that the genome of T. azotonutricium ZAS-9
encodes another protein (of unknown function) with DUF4062/NACHT/TPR domain ar-
chitecture. This finding suggests a possible recombination/duplication event leading to
emergence of the SecA_DEAD/SecA_SW domain-containing protein in the T. azotonutri-
cium ZAS-9 genome. However, more detailed phylogenetic analysis is needed to address the
question of evolutionary origin and relatedness of these proteins.

We also identified an additional SecA_DEAD domain protein encoded in the genomes of
several PVC species, which is a novel finding. The secondary SecA_DEAD domain protein ei-
ther lacks the SecA_SW domain entirely, or contains only a small fragment of it. These pro-
teins are henceforth referred to as secondary SecA_DEAD domain proteins; this term
provides more conservative annotation than SecA2, as involvement of these proteins with the
Sec pathway has not been experimentally demonstrated. The presence of a secondary SecA_-
DEAD domain-containing protein in PVC bacteria is intriguing, but (as described above for
SecA_SW domain rearrangements within canonical SecA proteins) the presence/absence
profile of this protein is only weakly correlated with that of intracellular membranes (Phi cor-
relation is 0.66). This suggests that the protein is not functionally related to PVC-specific
intracellular membranes.
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Fig 1. Domain architecture of SecA_DEAD domain-containing proteins in 99 genomes included in the analysis in Kamneva et al, 2012 [26]. Domain
architecture of every protein containing SecA_DEAD domains is shown as identified using search against the Pfam [28] database; only domains showing hits
above trusted cut-off are shown. Names of the organisms are shown on the left, grey background—organisms with intracellular membranes present, white
background—absent, marked by * sign—organisms have not been examined using appropriate microscopy techniques. Gi numbers of corresponding
proteins are shown in parentheses. Domain architecture of every identified protein is on the right, length of the protein is to scale, but distance between
proteins is not. Names of the domains and shapes used to represent them are shown in the inset.

doi:10.1371/journal.pone.0129066.g001
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Evolutionary origin of secondary SecA_DEAD domain proteins in PVC
bacteria
The presence of a secondary SecA_DEAD domain protein in the genomes of several PVC bac-
teria is highly unusual, as the majority of bacterial genomes encode strictly one SecA_DEAD
domain protein, SecA ATPase. This prompted us to investigate the evolutionary origin of these
genes (workflow shown in Figure C in S1 Fig). We identified SecA_DEAD domain proteins en-
coded within representative distantly related bacterial genomes (extended genome dataset),
and used these sequences for phylogenetic analysis. We used FastTree for phylogeny recon-
struction, as its approximate likelihood computations allow much faster inference from large
datasets, while performing comparably well with classical likelihood methods [35].

The phylogeny obtained (Fig 2, S4 Fig) indicates that the secondary SecA_DEAD domain
proteins from PVC bacteria are not related to the corresponding canonical SecA ATPase from
those genomes, but rather to proteins with similar domain composition from several phyla of
Proteobacteria, and one species each from the phyla Chlorobi and Nitrospirae (Fig 2, S4 Fig).
This suggests that these proteins have been shared between organisms via horizontal gene

Fig 2. Phylogenetic relationship between SecA_DEAD domain proteins from PVC and other genomes. The clade of the SecA phylogeny containing
additional SecA_DEAD domain proteins is shown. Phylogeny was recovered as described in Methods section. Bootstrap support values are shown if higher
than 0.5. Domain composition of every protein is shown on the right except for three proteins belonging to the clade on the very top, which are omitted due to
large size of the proteins, to maintain visual clarity. The lineage leading to a clade containing planctomycete, verrucomicrobial and proteobacterial sequences
is marked by * sign.

doi:10.1371/journal.pone.0129066.g002
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transfer (HGT) or that they were present in the last common ancestor of those species and were
subjected to extensive gene loss throughout the bacterial clade of the tree of life. Since the occur-
rence of secondary SecA_DEAD domain-containing proteins seems to be unrelated to the pres-
ence of PVC intracellular membranes, the presence of these genes in other bacterial clades
should not be interpreted as evidence that these organisms possess intracellular membranes. It
is noticeable that the proteins within this clade have lost their wing-scaffold domain (either
completely or partially), indicating structural divergence of this protein and canonical SecA.

The clade containing PVC secondary SecA_DEAD domain proteins is related to the clade
containing SecA2 proteins from Actinobacteria, again suggesting either ancient origin of these
genes or that they have been transferred horizontally. In terms of domain composition, pro-
teins in this clade seem to have undergone domain rearrangements in their wing-scaffold do-
main consistent with previous observations [56], but not to the extent of changes observed in
the sister clade described above.

Secondary SecA_DEAD domain proteins from Planctomycetes,
Verrucomicrobia and other bacteria are encoded within a conserved
genomic locus
In order to identify genes functionally associated with secondary SecA_DEAD domain proteins
in PVC, Proteobacteria, Nitrospirae and Chlorobi we examined the genomic neighborhoods of
every protein from a PVC-related clade (Fig 2; workflow shown in Figure D in S1 Fig). In order
to determine whether there is a conserved neighborhood present around the secondary SecA_-
DEAD domain proteins, we extracted all relevant proteins and clustered their sequences using
single linkage clustering based on protein sequence identity, using the blastclust program. We
obtainined a number of clusters of different sizes (S5 Fig, S2 Table). The first three clusters are
of particular interest because these proteins are encoded by a larger number of genomic neigh-
borhoods around secondary SecA_DEAD domain proteins (S2 Table). Proteins in the first, sec-
ond, and third clusters are annotated as peptidases, secretion proteins, and signal transduction/
sensory proteins, respectively. Additionally, we examined relevant gene neighbor scores re-
ported for every pair of orthologous groups in the STRING database [46]. The gene neighbor
method is based on an empirical observation that functionally related genes tend to be encoded
within genomic clusters in microbial genomes. The fact that functionally related genes are co-
encoded is attributed to the inherent advantages of transcriptional co-regulation of genes locat-
ed in close proximity within genomes [60] and by co-inheritance of functionally related genes
in the event of HGT. The gene neighbor method has been shown to outperform other known
genome content-based methods [61].

We extracted gene neighbor scores for pairs of orthologous groups corresponding to SecA_-
DEAD domain proteins and proteins from clusters one, two and three (S3 Table). The gene
neighbor scores for association between SecA homologs and other proteins tend to be smaller,
which is likely attributed to the fact that this group includes canonical SecA as well as second-
ary SecA_DEAD domain proteins. The scores are still high and correspond to either the very
beginning or the middle of the ROC curve when gene neighbor scores are tested on proteins
from known pathways and complexes in the Escherichia coli str. K-12 substr. MG1655 genome,
as reported in EcoCyc [52] (S6 Fig). Therefore, we conclude that secondary SecA_DEAD do-
main proteins are functionally associated with at least three other proteins and that they are
often found within conserved genomic neighborhoods with those proteins. A schematic repre-
sentation of the conserved genomic loci in various bacteria (Fig 3) shows only domains found
in those secondary SecA_DEAD and proteins from the three clusters that were predicted to be
functionally associated.
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The newly identified conserved genomic module encodes proteins
related to the type I secretion system, alongside the secondary
SecA_DEAD domain proteins
Conservation of the genomic neighborhood around secondary SecA2_DEAD domain proteins
in PVC genomes and genomes of other bacteria suggests that these loci encode molecular ma-
chinery responsible for a distinct cellular process. We conducted domain analysis of proteins
within the loci, in an attempt to predict the nature of this process. The proteins of the first, sec-
ond, and third clusters contain different types of HlyD domains and also bear rather weak (but
recognizable) similarity to the Peptidase_M50 domain (Fig 3). HlyD domains canonically
function within the Type I secretion system (TISS). This secretion system acts on different
kinds of substrates ranging from small molecules to polypeptides [62]. It is typically composed
of three parts: an ABC-transporter (HlyB in E. coli), a membrane fusion protein (HlyD in E.
coli), and an outer-membrane channel (TolC in E. coli). The ABC transporter provides the en-
ergy for the transport via ATP hydrolysis and a pore spanning the cytoplasmic membrane to
allow passage of molecules. The characteristic domains of HlyB include different parts of ABC
transporters. The membrane fusion protein forms a canal spanning the periplasmic space [63].
Different classes of HlyD and biotin_lipoyl domains can be considered as the signature do-
mains of membrane fusion proteins. The last component of the system is an outer-membrane
channel of the TolC family, which allows transport outside the cell and is characterized by the
presence of OEP protein domains.

We identified proteins carrying numerous HlyD domains within the genomic neighbor-
hood of secondary SecA_DEAD domain proteins (Fig 3). In some cases we also observed OEP
domain proteins, which are normally encoded elsewhere in a genome but which are sometimes
found adjacent to other TISS proteins [64]. While we could not identify homologs of an ABC
transporter within these loci, the SecA_DEAD domain is responsible for ATP hydrolysis when
functioning within the canonical SecA, therefore it seems possible that the secondary SecA_-
DEAD domain protein is co-opted here as a functional ATPase. However, while this protein
may provide ATPase activity, it cannot form a trans-membrane pore and completely abolish

Fig 3. Genomic neighborhood of genes encoding secondary SecA_DEAD domain proteins from PVC and other genomes. Domain composition of
proteins carrying domains present in several copies in close proximity to secondary SecA_DEAD domain proteins across the genomic loci are shown.
Protein length is to scale unless pictured as an interrupted line, in which case protein had a length over 1,000 amino acids. Names of the domain shapes and
different shading/filling used to represent them are shown on the right. Domains canonically related to the type I secretion system (different HlyD domains
and OEP domain) are filled in white hexagons and pentagons or shown as hexagons with diagonal stripes.

doi:10.1371/journal.pone.0129066.g003
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the need for an ABC-transporter. The peptidase_M50 domain proteins encoded within the ge-
nomic loci are good candidates for transmembrane proteins; MEROPS peptidases are generally
known to be buried within the lipid bilayer [65, 66]. Additionally, peptidase_M50 domain pro-
teins from the conserved genomic loci are predicted to contain trans-membrane helices (S7
Fig), and therefore could potentially form a pore in the cytoplasmic membrane to complete re-
quired ABC transporter function.

Another protein present in the majority of the loci is a GAF domain-containing protein.
GAF domains are canonically involved in signal transduction and are usually linked to some
effector domain of enzymatic activity [67]. In this case, GAF domain proteins also contain
HlyD and biotin_lipoyl domains; the function of this member of the conserved locus is unclear
but the presence of the GAF domain suggests a regulatory and sensory role for this protein.

In order to evaluate the evolutionary history of additional proteins encoded within the con-
served genomic loci, we extended five homologous groups and reconstructed the phylogenies
of the extended gene families (S8, S9, S10, S11 and S12 Figs). It appears that genes from these
genomic loci are related to sequences from Planctomycetes, Verrucomicrobia, different subdivi-
sions of the Proteobacteria and a few species from other phyla, further supporting lateral trans-
fer of this conserved locus between the genomes. In-depth phylogenetic and functional
sequence analysis will be required to reveal the detailed evolutionary history of these additional
components of the locus. From the extended phylogeny, it is also evident that while some of
the secondary SecA_DEAD domain proteins are not co-encoded with functionally associated
proteins, those proteins are found elsewhere in the genome (S13 Fig).

Although the presence of conserved domains in co-encoded proteins provides evidence for a
secretion-related function of the conserved genomic locus, their broader biological role is
completely unknown. Gene expression analysis, identifying changes in expression of genes within
the locus in response to changes in the environment, could help to predict this biological role. The
only organism possessing the newly identified locus and having available gene expression data is
Methylobacterium extorquensAM1 [47]. In this genome, four genes MexAM1_META1p2402,
-2401, -2400 and -2399 (coding for GAF, Peptidase_M50, SecA_DEAD, HlyD/Biotin_lipoyl do-
main proteins respectively; proteins from the three clusters described previously and secondary
SecA_DEAD) are members of one operon (S4 Table) on the reverse DNA strand (data from
microbesonline database [68, 69]). Genome-wide expression was measured in the exponential
phase of growth ofM. extorquensAM1 using microarray technology. Our reanalysis of this ex-
pression data set indicates that the ORF encoding the GAF domain containing protein (Mex-
AM1_META1p2402) is expressed in the exponential growth phase, using for comparison the
ATP synthase F1 sector operon genes recognized to be actively transcribed during exponential
growth [70] (S14 Fig, S4 Table). This result, together with sequence analysis of the region, indi-
cates the presence of an internal terminator within the operon (S5 Table) and further supports the
regulatory role of this protein inM. extorquens AM1. The rest of the genes are either not express-
ed, or are expressed at a very low level, suggesting they do not play a role under the experimental
conditions. Application of molecular and cell biology experimental approaches will be required to
elucidate the molecular and cellular functions, as well as the intracellular localization, of proteins
encoded by the conserved locus, and molecular complexes in which they may participate.

Conclusions
In the present study, we examined the possibility that proteins preferentially present in intra-
cellular membrane-bearing PVC bacteria are targeted to their cellular destination via the Sec
pathway. We showed that canonical signal peptides are over-represented within those proteins,
which implies involvement of a canonical translocase in their targeting. The recent
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development of genetic tools for species within Planctomycetes [71] and Verrucomicrobia [72]
makes this hypothesis testable in the future using targeted mutagenesis, immunoelectron mi-
croscopy and other approaches requiring genetic tools.

We were not able to identify gene duplication, loss, or protein domain rearrangements af-
fecting any of the canonical Sec proteins and statistically associated with the presence of intra-
cellular membranes in PVC bacteria. However, we presented evidence for an additional
SecA_DEAD domain protein within the genomes of several Gram-negative bacteria of the
phyla Planctomycetes, Verrucomicrobia, Proteobacteria and only a few species from phyla
Chlorobi and Nitrospirae. This, to the best of our knowledge, is the first case of a potentially du-
plicated SecA protein reported for Gram-negative bacteria. We also identified several proteins
functionally associated with the additional SecA_DEAD domain proteins, often co-encoded
with the additional SecA_DEAD domain proteins. These associated proteins contain domains
specific for the Type I secretion system, which suggests a secretion-related function. Based on
the results of our phylogenetic inference, it is likely that this conserved locus has been shared
among different genomes via HGT.

Supporting Information
S1 Fig. Analysis workflow.
(PDF)

S2 Fig. Signal peptides found in proteins preferentially present in the intracellular mem-
brane-bearing members of the PVC superphylum. Hierarchical clustering of signal peptides
from 92 gene families is shown as a dendrogram. Logos of signal peptides are also shown for
every gene family. Gene family numbers are indicated in the middle of the figure, starting with
the letter X.
(PDF)

S3 Fig. Domain architecture of NACHT domain-containing proteins encoded in 99 diver-
gent bacterial genomes. Domain architecture of every protein containing a NACHT domain
(identified by searching against the Pfam (28) database; only domains showing hits above
trusted cut-off are shown). Numbers listed underneath organism names are gi numbers of pro-
tein sequences. T. azotonitricum ZAS-9 is highlighted in pink. Domain and protein length is to
scale. A key to the domains is provided on the right.
(PDF)

S4 Fig. Large-scale phylogeny of SecA_DEAD domain-containing proteins. The phylogenet-
ic tree was reconstructed for all SecA_DEAD domain-containing proteins and visualized using
the iTOL web-server. Branches of the tree are colored according to the bacterial phyla to which
sequences belong; a key is provided on the left. The colored bars corresponding to the multi-
phyla clade of SecA_DEAD domain-containing proteins explored further in Fig 2 are circled.
(PDF)

S5 Fig. Distribution of sizes of protein sequence clusters encoded within genomic neigh-
borhoods of SecA2 proteins from PVC and other bacterial genomes. Protein sequences cor-
responding to genes encoded within the neighborhood of SecA2 proteins were clustered. The
cluster corresponding to SecA_DEAD domain-containing proteins is marked as “SecA2”. The
presence in a number of genomes of similar sequences encoded in close proximity to SecA_-
DEAD domain-containing proteins indicates that those proteins might be functionally related.
Bars corresponding to large clusters examined further are shaded.
(PDF)
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S6 Fig. ROC curve benchmarking the use of gene neighbor scores reported in STRING to
predict functionally associated proteins. E. coli K-12 substr. MG1655 proteins reported in
EcoCyc were used as a test set. Performance on three different true positive sets is shown in dif-
ferent colors as indicated on the figure. Points on the curves corresponding to different thresh-
olds of gene neighbor scores are shown by blue marks indicated on the figure.
(PDF)

S7 Fig. Transmembrane helix prediction in characterized and predicted HlyB proteins.
Upper panel: Prediction for HlyB from the E. coliO157 H7 Sakai genome (identifier from KEGG
database is shown). Lower panel: Prediction for hypothetical protein DSM3645_23885 from the
B.marinaDSM 3645 genome (gi number is shown as an identifier). Predictions were carried out
and visualized using the TMHMMweb-server (http://www.cbs.dtu.dk/services/TMHMM/).
(PDF)

S8 Fig. Unrooted phylogeny and domain composition of Peptidase_M50 domain-contain-
ing proteins (Cluster 1). Unrooted phylogenetic tree was reconstructed for all homologs of
proteins from cluster 1. Bootstrap values less than 0.5 are not shown. Scale bar at left represents
protein evolutionary distance equivalent to 0.2 substitutions per amino acid site. Domain ar-
chitecture was identified by searching against the Pfam (28) database. Numbers adjacent to the
organism names represent protein sequence gi numbers. Red font indicates that the protein is
located in close proximity to SecA_DEAD domain proteins. Domain and protein length is to
scale. A key to the domains is provided on the right. Scale bar at right is equivalent to 100
amino acids of protein length. Blue vertical bar marks proteins used to generate S12 Fig.
(PDF)

S9 Fig. Unrooted phylogeny and domain composition of putative secretion proteins (Clus-
ter 2). Unrooted phylogenetic tree was reconstructed for all homologs of proteins from cluster
2. Bootstrap values less than 0.5 are not shown. Scale bar at left represents protein evolutionary
distance equivalent to 0.2 substitutions per amino acid site. Domain architecture was identified
by searching against the Pfam (28) database. Numbers adjacent to the organism names repre-
sent protein sequence gi numbers. Red font indicates that the protein is located in close prox-
imity to SecA_DEAD domain proteins. Domain and protein length is to scale. A key to the
domains is provided on the right. Scale bar at right is equivalent to 100 amino acids of protein
length. Blue vertical bar marks proteins used to generate S12 Fig.
(PDF)

S10 Fig. Unrooted phylogeny and domain composition of proteins from Cluster 3. The
phylogenetic tree was reconstructed for all homologs of proteins from cluster 3. Bootstrap val-
ues less than 0.5 are not shown. Scale bar at left represents protein evolutionary distance equiv-
alent to 0.2 substitutions per amino acid site. Domain architecture was identified by searching
against the Pfam (28) database. Numbers adjacent to the organism names represent protein se-
quence gi numbers. Red font indicates that the protein is located in close proximity to SecA_-
DEAD domain proteins. Domain and protein length is to scale. A key to the domains is
provided on the right. Scale bar at right is equivalent to 100 amino acids of protein length. Blue
vertical bar marks proteins used to generate S12 Fig.
(PDF)

S11 Fig. Unrooted phylogeny and domain composition of proteins from Cluster 4. The
phylogenetic tree was reconstructed for all homologs of proteins from cluster 4. Bootstrap val-
ues less than 0.5 are not shown. Scale bar at left represents protein evolutionary distance equiv-
alent to 0.2 substitutions per amino acid site. Domain architecture was identified by searching
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against the Pfam (28) database. Numbers adjacent to the organism names represent protein se-
quence gi numbers. Red font indicates that the protein is located in close proximity to SecA_-
DEAD domain proteins. Domain and protein length is to scale. A key to the domains is
provided on the right. Scale bar at right is equivalent to 100 amino acids of protein length.
(PDF)

S12 Fig. Unrooted phylogeny and domain composition of proteins from Cluster 5. The
phylogenetic tree was reconstructed for all homologs of proteins from cluster 5. Bootstrap val-
ues less than 0.5 are not shown. Scale bar at left represents protein evolutionary distance equiv-
alent to 0.2 substitutions per amino acid site. Domain architecture was identified by searching
against the Pfam (28) database. Numbers adjacent to the organism names represent protein se-
quence gi numbers. Red font indicates that the protein is located in close proximity to SecA_-
DEAD domain proteins. Domain and protein length is to scale. A key to the domains is
provided on the right. Scale bar at right is equivalent to 100 amino acids of protein length.
(PDF)

S13 Fig. Distribution of genes from loci containing SecA_DEAD domain proteins across
genomes. The heatmap visualizes the distribution of genes from loci containing SecA_DEAD
domain proteins across various genomes. Red indicates presence of the gene near to the sec-
ondary SecA_DEAD domain protein, pink indicates presence of the gene elsewhere in the ge-
nome, blue indicates absence of the gene. Genome names are shown on the right, Phylum or
class level taxonomic names are indicated in parentheses as follows: A—Alphaproteobacteria; B
—Betaproteobacteria; G—Gammaproteobacteria; D/E—delta/epsilon subdivisions of the Pro-
teobacteria; C—Chlorobi; N—Nitrospirae; P—Planctomycetes; V—Verrucomicrobia.
(PDF)

S14 Fig. mRNA expression for ORFs in M. extorquens AM1. Expression level (log2-trans-
formed intensity values for the 5’ and C1 microarray probes) of four ORFs encoded within ge-
nomic loci associated with SecA_DEAD domain-proteins (A), as well as of ATP synthase F1
genes recognized as housekeeping genes (B), are shown for several substrains ofM. extorquens
AM1. mRNA level was measured in three biological replicates and mean intensity value plotted
as a dot; standard error is shown as an error bar for each point. Strains ofM. extorquens AM1
used for these comparisons are described in [43] and designated by different symbols, includ-
ing wild-type (�), mutant (●) and adapted mutant strains (□, ■,4,5, ×, �, �,▲) as shown in
the bottom of each panel. mRNA level was measured in the exponential growth phase. Four
SecA_DEAD domain-associated genes are designated as MexAM1_META1p2402- Mex-
AM1_META1p2399 and shown in part A of the figure. ORFs from the ATPase F1 encoding-
operon (MexAM1_META1p1359- MexAM1_META1p1362) are shown in part B. Genomic
locations for the start of every ORF, and the middle of every microarray probe, are shown
above the map in black and grey, respectively.
(PDF)

S1 Table. Inferred signature domains of Sec proteins.
(PDF)

S2 Table. Similar proteins encoded within genomic neighborhoods of SecA_DEAD domain
proteins. �—protein sequence cluster; ��—distance from SecA_DEAD protein; A—Alphapro-
teobacteria; B—Betaproteobacteria; G—Gammaproteobacteria; D/E—Delta/Epsilon subdivi-
sion of the Proteobacteria;N—Nitrospirae; P—Planctomycetes; V—Verrucomicrobia; Ph—
phylum; Cl—Class.
(PDF)
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